Алексей Борзов (Sad Spirit)
borz_off@cs.msu.su
Скорость работы, вообще говоря, не является основной причиной использования реляционных СУБД. Более того, первые реляционные базы работали медленнее своих предшественников. Выбор этой технологии был вызван скорее
Таким образом, прежде, чем искать ответ на вопрос «как заставить РСУБД работать быстрее в моей задаче?» следует ответить на вопрос «нет ли более подходящего средства для решения моей задачи, чем РСУБД?» Иногда использование другого средства потребует меньше усилий, чем настройка производительности.
Данная статья посвящена возможностям повышения производительности свободной РСУБД PostgreSQL. Статья не претендует на исчерпывающее изложение вопроса, наиболее полным и точным руководством по использованию PostgreSQL является, конечно, официальная документация [1] и официальный FAQ [2]. Также существует англоязычный список рассылки postgresql-performance, посвящённый именно этим вопросам.
Статья состоит из двух разделов, первый из которых ориентирован скорее на администратора, второй -- на разработчика приложений. Рекомендуется прочесть оба раздела: отнесение многих вопросов к какому-то одному из них весьма условно. Большая часть раздела, посвящённого настройке сервера, является переводом материалов [3], [4], [5]. В разделе, посвящённом оптимизации БД и приложения, использовались [6], [7], [8] и личный опыт.
По умолчанию PostgreSQL сконфигурирован таким образом, чтобы он мог быть запущен практически на любом компьютере и не слишком мешал при этом работе других приложений. Это особенно касается используемой памяти.
Настройки по умолчанию подходят только для следующего использования: с ними вы сможете проверить, работает ли установка PostgreSQL, создать тестовую базу уровня записной книжки и потренироваться писать к ней запросы. Если вы собираетесь разрабатывать (а тем более запускать в работу) реальные приложения, то настройки придётся радикально изменить.
В дистрибутиве PostgreSQL, к сожалению, не поставляется файлов с «рекомендуемыми» настройками. Вообще говоря, такие файлы создать весьма сложно, т.к. оптимальные настройки конкретной установки PostgreSQL будут определяться:
Если у вас стоит устаревшая версия PostgreSQL, то наибольшего ускорения работы вы сможете добиться, обновив её до текущей. Укажем лишь наиболее значительные из связанных с производительностью изменений.
Перед тем, как заниматься настройкой сервера, вполне естественно ознакомиться с опубликованными данными по производительности, в том числе в сравнении с другими СУБД. К сожалению, многие тесты служат не столько для облегчения вашего выбора, сколько для продвижения конкретных продуктов в качестве «самых быстрых».
При изучении опубликованных тестов в первую очередь обратите внимание, соответствует ли величина и тип нагрузки, объём данных и сложность запросов в тесте тому, что вы собираетесь делать с базой? Пусть, например, обычное использование вашего приложения подразумевает несколько одновременно работающих запросов на обновление к таблице в миллионы записей. В этом случае СУБД, которая в несколько раз быстрее всех остальных ищет запись в таблице в тысячу записей, может оказаться не лучшим выбором.
Ну и наконец, вещи, которые должны сразу насторожить:
В этом разделе описаны рекомендуемые значения параметров, влияющих на производительность СУБД. Эти параметры обычно устанавливаются в конфигурационном файле postgresql.conf и влияют на все базы в текущей установке.
PostgreSQL не читает данные напрямую с диска и не пишет их сразу на диск. Данные загружаются в общий буфер сервера, находящийся в разделяемой памяти, серверные процессы читают и пишут блоки в этом буфере, а затем уже изменения сбрасываются на диск.
Если процессу нужен доступ к таблице, то он сначала ищет нужные блоки в общем буфере. Если блоки присутствуют, то он может продолжать работу, если нет -- делается системный вызов для их загрузки. Загружаться блоки могут как из файлового кэша ОС, так и с диска, и эта операция может оказаться весьма «дорогой».
Если объём буфера недостаточен для хранения часто используемых рабочих данных, то они будут постоянно писаться и читаться из кэша ОС или с диска, что крайне отрицательно скажется на производительности.
Объём задаётся параметром shared_buffers в файле postgresql.conf. Единица измерения параметра -- блоки величиной 8 кБ. По умолчанию значение параметра составляет 64 1 , что соответствует 512 кБ памяти. Это весьма мало, и для полноценной работы значение параметра следует увеличить.
В то же время не следует устанавливать это значение слишком большим: PostgreSQL полагается на то, что операционная система кэширует файлы (см. пункт 2.4.1), и не старается дублировать эту работу. Кроме того, чем больше памяти будет отдано под буфер, тем меньше останется операционной системе и другим приложениям, что может привести к своппингу.
В качестве начальных значений можете попробовать следующие:
Обратите внимание, что память под буфер выделятся при запуске сервера, и её объём при работе не изменяется. Учтите также, что настройки ядра операционной системы могут не дать вам выделить большой объём памяти. В руководстве администратора PostgreSQL описано, как можно изменить эти настройки: http://developer.postgresql.org/docs/postgres/kernel-resources.html
Этот параметр определяет объём памяти, которую процесс может использовать для сортировки результата запроса. Учтите, что такой объём может быть использован каждым процессом для каждой сортировки (в сложных запросах их может быть несколько).
Если объём памяти недостаточен для сортироки некоторого результата, то серверный процесс будет использовать временные файлы. Если же объём памяти слишком велик, то это может привести к своппингу.
Объём памяти задаётся параметром sort_mem в файле postgresql.conf. Единица измерения параметра -- 1 кБ. Значение по умолчанию -- 1024.
В качестве начального значения для параметра можете взять 2-4% доступной памяти.
Этот параметр может также быть задан для отдельного соединения. Если вы знаете, что в конкретном соединении будет выполняться запрос, требующий сортировки значительного объёма данных, то можете поднять значение sort_mem перед выполнением запроса.
Этот параметр задаёт объём памяти, используемый командой VACUUM. Обычно эта команда больше нагружает диски, но увеличение vacuum_mem позволит ускорить процесс за счёт хранения в памяти больших объёмов информации об удалённых записях.
Объём памяти задаётся параметром vacuum_mem в файле postgresql.conf. Единица измерения параметра -- 1 кБ. Значение по умолчанию -- 8192.
Этот параметр может также быть задан для отдельного соединения. Можете сделать его поменьше для частых регулярных запусков VACUUM и большим для ежедневных/еженедельных запусков VACUUM FULL.
Журнал транзакций PostgreSQL работает следующим образом: все изменения в файлах данных (в которых находятся таблицы и индексы) производятся только после того, как они были занесены в журнал транзакций, при этом записи в журнале должны быть гарантированно записаны на диск.
В этом случае нет необходимости сбрасывать на диск изменения данных при каждом успешном завершении транзакции: в случае сбоя БД может быть восстановлена по записям в журнале. Таким образом, данные из буферов сбрасываются на диск при проходе контрольной точки: либо при заполнении нескольких (параметр checkpoint_segments, по умолчанию 3) сегментов журнала транзакций, либо через определённый интервал времени (параметр checkpoint_timeout, измеряется в секундах, по умолчанию 300).
Изменение этих параметров прямо не повлияет на скорость чтения, но может принести большую пользу, если данные в базе активно изменяются.
Наиболее радикальное из возможных решений -- выставить значение No параметру fsync. При этом записи в журнале транзакций не будут принудительно сбрасываться на диск, что даст большой прирост скорости записи. Учтите: вы жертвуете надёжностью, в случае сбоя целостность базы будет нарушена, и её придётся восстанавливать из резервной копии!
Использовать этот параметр рекомендуется лишь в том случае, если вы всецело доверяете своему «железу» и своему источнику бесперебойного питания. Ну или если данные в базе не представляют для вас особой ценности...
В пункте 2.5.1 описано менее радикальное решение, позволяющее, тем не менее, добиться хорошего прироста производительности.
Если в базу заносятся большие объёмы данных, то контрольные точки могут происходить слишком часто 2 . При этом производительность упадёт из-за постоянного сбрасывания на диск данных из буфера.
Для увеличения интервала между контрольными точками нужно увеличить количество сегментов журнала транзакций (checkpoint_segments). Каждый сегмент занимает 16 МБ, так что на диске будет занято дополнительное место. Обычно на диске будет не менее одного и не более 2*checkpoint_segments+1 сегментов журнала.
Следует также отметить, что чем больше интервал между контрольными точками, тем дольше будут восстанавливаться данные по журналу транзакций после сбоя.
Особенностями версионных движков БД (к которым относится и используемый в PostgreSQL) является следующее:
До версии 7.2 команда VACUUM полностью блокировала таблицу. Начиная с версии 7.2, команда VACUUM накладывает более слабую блокировку, позволяющую параллельно выполнять команды SELECT, INSERT, UPDATE и DELETE над обрабатываемой таблицей. Старый вариант команды называется теперь VACUUM FULL.
Новый вариант команды не пытается удалить все старые версии записей и, соответственно, уменьшить размер файла, содержащего таблицу, а лишь помечает занимаемое ими место как свободное. Для информации о свободном месте есть следующие настройки:
Параметр max_fsm_relations должен быть не меньше общего количества таблиц во всех базах данной установки. В качестве начального приближения для max_fsm_pages можно взять половину от среднего количества записей, изменяемых (UPDATE или DELETE) между запусками команды VACUUM.
Этот параметр сообщает PostgreSQL примерный объём файлового кэша операционной системы, оптимизатор использует эту оценку для построения плана запроса.
Объём задаётся параметром effective_cache_size в postgresql.conf. Единица измерения -- блоки величиной 8 кБ. По умолчанию значение параметра составляет 1000.
Пусть в вашем компьютере 1,5 ГБ памяти, параметр shared_buffers установлен в 32 МБ, а параметр effective_cache_size в 800 МБ. Если запросу нужно 700 МБ данных, то PostgreSQL оценит, что все нужные данные уже есть в памяти и выберет более агрессивный план с использованием индексов и merge joins. Но если effective_cache_size будет всего 200 МБ, то оптимизатор вполне может выбрать более эффективный для дисковой системы план, включающий полный просмотр таблицы.
В качестве начального значения можете использовать 25-50% доступной 5 памяти.
Очевидно, что от качественной дисковой подсистемы в сервере БД зависит немалая часть производительности. Вопросы выбора и тонкой настройки «железа», впрочем, не являются темой данной статьи, ограничимся уровнем файловой системы.
Единого мнения насчёт наиболее подходящей для PostgreSQL файловой системы нет, поэтому рекомендуется использовать ту, которая лучше всего поддерживается вашей операционной системой. При этом учтите, что современные журналирующие файловые системы не намного медленнее не-журналирующих, а выигрыш -- быстрое восстановление после сбоев -- от их использования велик.
Вы легко можете получить выигрыш в производительности без побочных эффектов, если примонтируете файловую систему, содержащую базу данных, с параметром noatime 6 .
При доступе к диску изрядное время занимает не только собственно чтение данных, но и перемещение магнитной головки.
Если в вашем сервере есть несколько физических дисков 7 , то вы можете разнести файлы базы данных и журнал транзакций по разным дискам. Данные в сегменты журнала пишутся последовательно, более того, записи в журнале транзакций сразу сбрасываются на диск, поэтому в случае нахождения его на отдельном диске магнитная головка не будет лишний раз двигаться, что позволит ускорить запись.
Порядок действий:
Для быстрой работы каждого запроса в вашей базе в основном требуется следующее:
В данном разделе описаны действия, которые должны периодически выполняться для каждой базы. От разработчика требуется только настроить их автоматическое выполнение (при помощи cron) и опытным путём подобрать его оптимальную частоту.
Используется для «сборки мусора» в базе данных. Начиная с версии 7.2, существует в двух вариантах:
Рекомендуется достаточно частое -- в [7] и [8], например, раз в несколько минут (!) -- выполнение VACUUM ANALYZE для часто обновляемых баз (или отдельных таблиц). В обыкновенных случаях достаточно ежедневного 8 выполнения этой команды. При этом обратите внимание: если «бутылочное горлышко» вашего сервера находится в районе дисковой подсистемы, то выполнение VACUUM параллельно с обычной работой может крайне отрицательно сказаться на производительности.
Команду VACUUM FULL стоит запускать достаточно редко, не чаще раза в неделю. Её также имеет смысл запускать вручную для конкретной таблицы после удаления или обновления большой части записей в ней.
Служит для обновления информации о распределении данных в таблице. Эта информация используется оптимизатором для выбора наиболее быстрого плана выполнения запроса.
Обычно команда используется в связке VACUUM ANALYZE. Если в базе есть таблицы, данные в которых не изменяются и не удаляются, а лишь добавляются, то для таких таблиц можно использовать отдельную команду ANALYZE. Также стоит использовать эту команду для отдельной таблицы после добавления в неё большого количества записей.
Начиная с версии 7.4, в дистрибутиве PostgreSQL поставляется программа pg_autovacuum, которая отслеживает изменения в таблицах и автоматически запускает команды VACUUM и/или ANALYZE для этих таблиц по достижении определённого предела.
Использование этой программы позволяет отказаться от настройки периодического выполнения команд VACUUM и ANALYZE. Более того, в случае использования pg_autovacuum ресурсы не тратятся впустую на обработку таблиц, которые практически не подвергались изменениям.
Для работы pg_autovacuum должен быть включён сборщик статистики (см. пункт 2.4.2) и включён параметр stats_row_level.
Команда REINDEX используется для перестройки существующих индексов. Использовать её имеет смысл в случае
Если вы заметили подобное поведение какого-то индекса, то стоит настроить для него периодическое выполнение команды REINDEX. Учтите: команда REINDEX, как и VACUUM FULL, полностью блокирует таблицу, поэтому выполнять её надо тогда, когда загрузка сервера минимальна.
Опыт показывает, что наиболее значительные проблемы с производительностью вызываются отсутствием нужных индексов. Поэтому столкнувшись с медленным запросом, в первую очередь проверьте, существуют ли индексы, которые он может использовать. Если нет -- постройте их.
Излишек индексов, впрочем, тоже чреват проблемами:
Команда EXPLAIN [запрос] показывает, каким образом PostgreSQL собирается выполнять ваш запрос. Команда EXPLAIN ANALYZE [запрос] выполняет запрос 10 и показывает как изначальный план, так и реальный процесс его выполнения.
Чтение вывода этих команд -- искусство, которое приходит с опытом. Для начала обращайте внимание на следующее:
При тестировании запросов с использованием EXPLAIN ANALYZE можно воспользоваться настройками, запрещающими оптимизатору использовать определённые планы выполнения. Например,
Результаты работы сборщика статистики (см. пункт 2.4.2) доступны через специальные системные представления. Наиболее интересны для наших целей следующие:
Вы можете построить индекс не только по полю/нескольким полям таблицы, но и по выражению, зависящему от полей. Пусть, например, в вашей таблице foo есть поле foo_name, и выборки часто делаются по условию «первая буква foo_name = 'буква', в любом регистре». Вы можете создать индекс
ON foo ((lower(substr(foo_name, 1, 1))));
WHERE lower(substr(foo_name, 1, 1)) = 'ы';
Следует отметить, что возможности задания подобных индексов были значительно расширены в версии 7.4, и приведённый пример может потребовать доработки, чтобы быть запущенным на более старой версии.
Под частичным индексом понимается индекс с предикатом WHERE. Пусть, например, у вас есть в базе таблица scheta с параметром uplocheno типа boolean. Записей, где uplocheno = false меньше, чем записей с uplocheno = true, а запросы по ним выполняются значительно чаще. Вы можете создать индекс
WHERE NOT uplocheno;
Обычные индексы не могут быть использованы в запросах, ищущих, например, вхождение подстроки в строку. Для этого требуются специальные средства полнотекстового поиска.
Наиболее продвинутым из имеющихся средств является tsearch2 http://www.sai.msu.su/ megera/postgres/gist/tsearch/V2/ Он поставляется в дистрибутиве PostgreSQL версии 7.4 в каталоге contrib/tsearch2, вариант для версии 7.3 можно скачать на указанном сайте.
За полным описанием возможностей tsearch2 обратитесь к поставляемой с ним документации.
Этот пункт очевиден для опытных пользователей PostrgeSQL и предназначен для тех, кто использует или переносит на PostgreSQL приложения, написанные изначально для более примитивных СУБД.
Реализация части логики на стороне сервера через хранимые процедуры, триггеры, правила 11 часто позволяет ускорить работу приложения. Действительно, если несколько запросов объединены в процедуру, то не требуется
В этом разделе описываются запросы, для которых по разным причинам нельзя заставить оптимизатор использовать индексы, и которые будут всегда вызывать полный просмотр таблицы. Таким образом, если вам требуется использовать эти запросы в требовательном к быстродействию приложении, то придётся их изменить.
Все агрегатные функции в PostgreSQL реализованы одинаково: сначала выбираются все записи, удовлетворяющие условию, а потом к полученному набору записей применяется агрегатная функция. У такого подхода есть достоинства -- вы можете легко написать собственную агрегатную функцию -- но есть и недостаток, который заключается в том, что для работы функций типа min() / max() весь набор записей совершенно не нужен.
Для их работы рациональней было бы воспользоваться индексом по полю, для которого ищется максимум (минимум), но для этого придётся сделать реализацию этих агрегатных функций отличной ото всех остальных.
Запрос вида
Запрос вида
К функции count() относится всё вышесказанное по поводу реализации агрегатных функций в PostgreSQL. Кроме того, информация о видимости записи для текущей транзакции (а конкурентным транзакциям может быть видимо разное количество записей в таблице!) не хранится в индексе. Таким образом, даже если использовать для выполнения запроса индекс первичного ключа таблицы, всё равно потребуется чтение записей собственно из файла таблицы.
Запрос вида
Простого решения проблемы, к сожалению, нет. Возможны следующие подходы:
Сразу отметим, что в версии 7.4 в обработку подзапросов с IN / NOT IN были внесены изменения, и теперь они работают (как минимум) не медленнее, чем подзапросы с EXISTS / NOT EXISTS. Если вы по каким-то причинам не можете обновить версию сервера до 7.4, то читайте дальше.
При использовании подзапроса вида
FROM foo
WHERE foo_field IN (
SELECT bar_field
FROM bar
...
);
Перепишите подзапрос с использованием конструкции EXISTS:
FROM foo
WHERE EXISTS (
SELECT bar_field
FROM bar
WHERE bar.bar_field = foo.foo_field
...
);
К счастью, PostgreSQL не требует особо сложной настройки. В большинстве случаев вполне достаточно будет увеличить объём выделенной памяти, настроить периодическое поддержание базы в порядке и проверить наличие необходимых индексов. Более сложные вопросы можно обсудить в специализированном списке рассылки.
Благодарю разработчиков PostgreSQL за создание и поддержку замечательной свободной РСУБД, разработчиков редактора LYX, в котором была написана эта статья, Александра Смирнова (PHPClub) за побуждение к её написанию, Елену Теслю за редакторскую работу.
Текущая версия статьи доступна в интернете по адресу [вставить адрес]. Замечания и исправления просьба направлять на email автору.
Алексей Борзов (Sad Spirit)
borz_off@cs.msu.su